Identification of novel and recurrent mutations in the calcium binding type III repeats of cartilage oligomeric matrix protein in patients with pseudoachondroplasia.

نویسندگان

  • L H Cao
  • L B Wang
  • S S Wang
  • H W Ma
  • C Y Ji
  • Y Luo
چکیده

Pseudoachondroplasia is an autosomal dominant osteochondrodysplasia characterized by disproportionate short stature, joint laxity, and early onset osteoarthrosis. Pseudoachondroplasia is caused by mutations in the gene encoding cartilage oligomeric matrix protein (COMP). We looked for mutations in the COMP gene in three sporadic Chinese pseudoachondroplasia patients and identified two novel mutations, c.1189G>T (p.D397Y) and c.1220G>A (p.C407Y), and one recurrent mutation, c.1318G>C (p.G440R), in the calcium binding type III repeats of COMP. This study confirms the relationship between mutations of the COMP gene and clinical findings of pseudoachondroplasia; it also provides evidence for the importance of the calcium binding domains to the functioning of COMP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A cartilage oligomeric matrix protein mutation associated with pseudoachondroplasia changes the structural and functional properties of the type 3 domain.

Cartilage oligomeric matrix protein (COMP) is a member of the thrombospondin family of extracellular matrix glycoproteins. All members of the family contain a highly conserved region of thrombospondin type 3 sequence repeats that bind calcium. A mutation in COMP previously identified in a patient with pseudoachondroplasia resulted in abnormal sequestration of COMP in distinctive rER vesicles. T...

متن کامل

Localization and Distribution of Cartilage Oligometric Matrix Protein in Spine

Introduction: Cartilage oligomeric matrix protein (COMP) is an important structural component of extracellular matrix [1]. Previous reports have shown that it is primarily localized to articular cartilage, with presence also found in tendon, ligament, and synovium. Its importance is suggested by its association with several pathological conditions. COMP distribution and degradation rates are al...

متن کامل

Characterization of a pseudoachondroplasia-associated mutation (His587-->Arg) in the C-terminal, collagen-binding domain of cartilage oligomeric matrix protein (COMP).

We have introduced a pseudoachondroplasia-associated mutation (His(587)-->Arg) into the C-terminal collagen-binding domain of COMP (cartilage oligomeric matrix protein) and recombinantly expressed the full-length protein as well as truncated fragments in HEK-293 cells. CD spectroscopy revealed only subtle differences in the overall secondary structure of full-length proteins. Interestingly, the...

متن کامل

Pseudoachondroplasia and Multiple Epiphyseal Dysplasia: A 7-Year Comprehensive Analysis of the Known Disease Genes Identify Novel and Recurrent Mutations and Provides an Accurate Assessment of Their Relative Contribution

Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are relatively common skeletal dysplasias resulting in short-limbed dwarfism, joint pain, and stiffness. PSACH and the largest proportion of autosomal dominant MED (AD-MED) results from mutations in cartilage oligomeric matrix protein (COMP); however, AD-MED is genetically heterogenous and can also result from mutations in mat...

متن کامل

A Novel Form of Chondrocyte Stress is Triggered by a COMP Mutation Causing Pseudoachondroplasia

Pseudoachondroplasia (PSACH) results from mutations in cartilage oligomeric matrix protein (COMP) and the p.D469del mutation within the type III repeats of COMP accounts for approximately 30% of PSACH. To determine disease mechanisms of PSACH in vivo, we introduced the Comp D469del mutation into the mouse genome. Mutant animals were normal at birth but grew slower than their wild-type littermat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 10 2  شماره 

صفحات  -

تاریخ انتشار 2011